Length-beam ratio


L/B = length divided by beam.

Units: Dimensionless.

Usually, the waterline dimensions LWL and BWL are used for monohulls, or for a single hull of a multihull.

What it's used for


Larger L/B indicates a slimmer hull. This usually implies less wave-making resistance, and thus more efficient high-speed performance, but also suggests reduced load-carrying ability for a given length.

If a boat can plane, smaller L/B often suggests more efficient performance at low planing speeds. The balance generally tilts in favour of high L/B for fast boats.

Typical ranges of L/B are:

2 to 4 - Small to mid-size planing powerboats.

3 to 4 - Most small to mid-size sailboats and motor yachts, the longer ones generally having higher L/B. Some "skimming dish" racing sailboats also have L/B in this range; their wide beam gives them more initial stability so that they can fly larger sails.

4 to 6 - Fairly long and lean for a monohull. Some large, efficient long-range cruisers fall in this range, along with many racing monohulls.

6 to 10 - Large freighters; main hulls of cruising trimarans; a few very portly cruising catamarans; the lightest and slimmest of large sailing monohulls.

10 to 16 - Fast cruising cats and tris; a few racing multihulls.

Over 16 - Racing multihulls. Such high L/B is conducive to very light, low-drag hulls for race boats, but makes it very hard to get enough room inside the hulls for equipment or living space.

Living Space

If a boat is going to spend most of its time in a marina or at anchor, relatively low L/B implies a larger, more spacious interior and increased carrying capacity when compared to slimmer competitors of the same length. For a boat that must entertain guests at the dock but will rarely be used in rough weather or at high speeds, this may be a significant advantage. The slimmer boat, though, will generally have the advantage when fuel is expensive or when the weather picks up.